
- 1. a) Explain the terms with example
 - i) Tree ii) Basic cut sets
 - b) The oriented connected graph of a system is shown in Figure-1. Obtain:

Duration: 3 hours Answer the following questions.

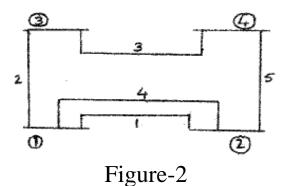
Code: 17EEPC1T1

ADVANCED COMPUTATIONAL METHODS IN

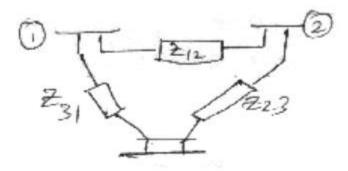
I M.Tech - I Semester – Supplementary Examinations December 2018

POWER SYSTEMS

(POWER SYSTEM & CONTROL)


7 M

8 M


Max. Marks: 60

Page 1 of 4

- 2. a) Define the terms with examples: i) Path ii) Link 6 M
 - b) For the sample power system shown in Figure-2 obtain: \widehat{A} , A, K, B, \widehat{B} , C, and \widehat{C} . Assume elements 4 and 5 as links, choose Bus 1 as reference. 9 M

3. a) For the system shown below find Y_{Bus} using nodal method. The impedances of the lines are (0.06+j0.2) pu. Neglect shunt admittance. 7 M

b) Discuss the classification of various types of buses in load flow studies.8 M

OR

4. a) Compare NR and GS method for load flow analysis		
procedure in respect of the following		
i) Time per iteration	ii) total solution time	
iii) acceleration factor	iv)number of iterations	7 M

- b) Explain briefly fast decoupled load flow solution method for solving the nonlinear load flow equations.8 M
- 5. a) Derive expression for power in terms of symmetrical components. 7 M
 - b) A three phase generator with constant terminal voltages gave the following currents when under fault: 1400 A for a line-to-line fault and 2200 A for a line-to-ground fault. If the positive sequence generated voltage to neutral is 2000 volts and the positive sequence reactance is 2 ohms, find the reactance offered to the negative and zero sequence currents.

OR

- 6. a) Describe the generalized fault analysis using Z_{BUS} for three phase balanced fault.
 7 M
 - b) Explain the fault analysis for determination of open conductor condition.8 M

7.	Describe the formulation of Z_{BUS} using step by step	
	method.	15 M
OR		
8. a) Describe the single line contingency analysis.	7 M
b) Explain the contingency analysis for DC power flow	
	model.	8 M